Complex Engineering Problem and Outcome-based Engineering Education: A Case Study

Jung Soo Kim

Hongik University

ABEEK. KSME

BAETE Symposium August 2020

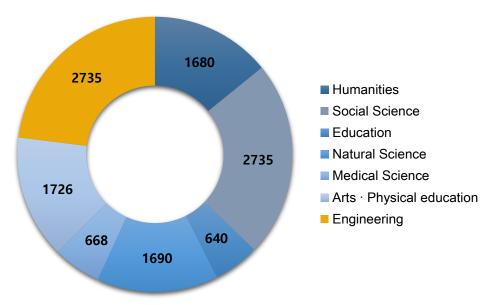
CONTENTS

- I. Engineering Education & Accreditation in Korea
- II. Graduate Attributes & Complex Engineering Problem
- III. Engineering Curriculum (ABEEK Criteria)
- IV. Complex Engineering Problem in Capstone Design

ad - ad - ad - a

: A Case Study

Higher Education in Korea

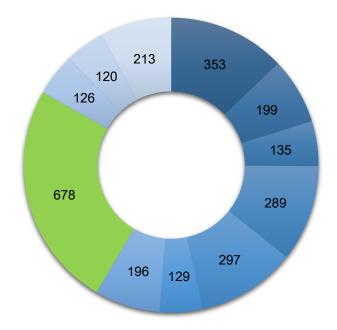

(Source: Korea Education Statistics Service, 2017)

\oplus Statistics on Higher Education in Korea

No. of Universities	No. of Programs	No. of Students
189	11,874	2,050,619 (564,952 in Engineering)
No. of Faculties	Size of Entry Cohort	No. of Graduates
73,326	343,076	335,367

⊕ Number & Percentage of Engineering Programs

Humanities	1680
Social Science	2735
Education	640
Natural Science	1690
Medical Science	668
Arts · Physical education	1726
Engineering	2735
Total	11,874



Engineering Education in Korea

(Source: Korea Education Statistics Service, 2017)

\oplus Breakdown of Engineering Programs

Architectural	353
Civil · Urban	199
Traffic · Transportation	135
Mechanical · Metal	196
Electrical · Electronic	297
Precision · Energy	129
Material	196
Computer · IT	678
Chemical	126
Industrial	120
Others	213
Total	2735

Architectural

- Civil · Urban
- Traffic · Transportation
- Mechanical · Metal
- Electrical · Electronic
- Precision · Energy

KSME

- Material
- Computer · IT
- Chemical
- Industrial
- Others

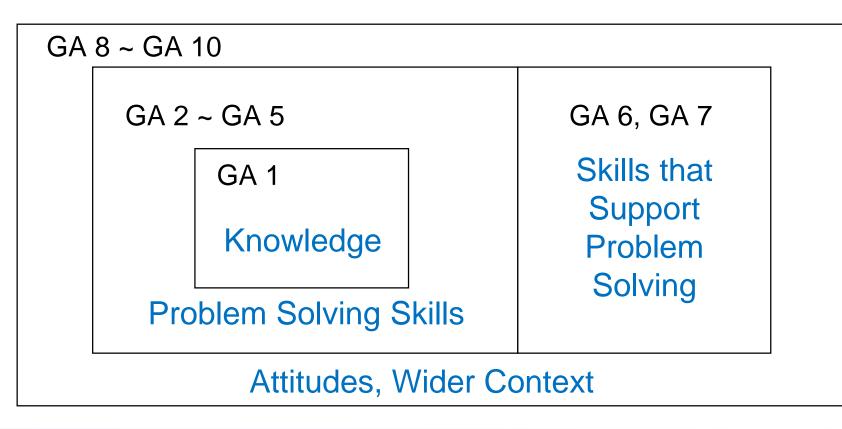
Accreditation Board for Engineering Education of Korea (ABEEK)

- Non-profit, independent body founded in 1999
 - Engineering → Washington Accord in 2007
 - Computer and IT \rightarrow Seoul Accord in 2008
 - Engineering Technology \rightarrow Sydney and Dublin Accords in 2013
 - Only recognized accrediting body in engineering
- Major industries, engineering societies, and public institutions in the governing board
- Accredited Programs (2019)
 - Engineering: 425 programs at 80 universities
 - Computer and IT: 50 programs at 41 universities
 - Approx. 50% of universities in Korea

Impact of Accreditation on Engineering Education

- Outcome-based education, Program Constituencies, CQI
- Math, Basic Sciences, Computing
- Soft skills
- Engineering design
 - → open-ended problem
 - → teamwork, communication skills
- In 2015, *complex engineering problem* embedded in ABEEK graduate attributes (KEC2015)
 - → ABEEK mandates capstone design to solve complex engineering problem

ABEEK Graduate Attributes (KEC2015)


(1) An ability to apply knowledge of mathematics, basic sciences, engineering, and information technology to the solution of complex engineering problems

- (2) an ability to analyze data, and verify facts and hypotheses through experiments
- (3) an ability to define and formulate complex engineering problems
- (4) an ability to apply latest information, research-based knowledge and appropriate tools to the solution of complex engineering problems
- (5) an ability to design a system, component, or process to meet desired needs within realistic constraints
- (6) an ability to contribute to project team output in the solution of complex engineering problems
- (7) an ability to communicate effectively under diverse situations
- (8) an ability to understand the impact of engineering solutions in the context of health and safety, economics, environment and sustainability
- (9) an ability to understand professional ethics and social responsibilities
- (10) a recognition of the need for, and an ability to engage in life-long learning in the context of technological change

ABEEK Graduate Attributes Framework

Categories

- 1. Applying Knowledge (GA1)
- 2. Problem Solving: Experiment, Modeling, Tools, Design (GA2~GA5)
- 3. Teamwork & Communication (GA6, GA7)
- 4. Attitudes, Understanding Impact of Engineering (GA8~GA10)

Washington Accord Graduate Attributes

WA Graduate	SA Graduate	DA Graduate
(Professional)	(Technologist)	(Technician)

Broadly defined

- 1. **Engineering Knowledge**
- Complex 2. **Problem Analysis Design/ development of solutions** 3. Complex Complex Investigation 4. 5. Modern Tool Usage Complex

Complex

- 6. The Engineer and Society
- **Environment and Sustainability** 7.
- 8. Ethics
- 9. Individual and Team work
- 10. **Communication**
- **11. Project Management and Finance**
- 12. Life long learning

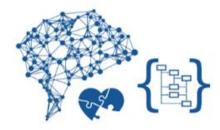
Broadly defined	Well defined
Broadly defined	Well defined
Broadly defined	Well defined
Broadly defined	Well defined

Well defined

http://www.ieagreements.com/GradProfiles.cfm

Washington Accord Complex Engineering Problem

Attribute	Complex Engineering Problems have characteristic WP1 and some or all of WP2 to	Broadly-defined Engineering Problems have characteristic SP1 and some or all of SP2 to	Well-defined Engineering Problems have characteristic dP1 and some or all of DP2 to	
	WP7:	SP7:	DP7:	
Knowledge required	WP1: cannot be resolved without in-depth engineering knowledge at the level of one or more of WK3, WK4, WK5, WK6 or WK8 which allows a fundamentals-based, first principles analytical approach;	SP1: cannot be resolved without engineering knowledge at the level of one or more of SK 4, SK5, and SK6 supported by SK3 with a strong emphasis on the application of developed technology;	DP1: can be resolved using limited theoretical knowledge defined in DK3 and DK4 but normally requires extensive practical knowledge as reflected in DK5 and DK6;	
Range of conflicting requirements	WP2: Involve wide-ranging or conflicting technical, engineering and other issues	SP2: Involve a variety of factors which may impose conflicting constraints	DP2: Involve several issues, but with few of these exerting conflicting constraints	
Depth of analysis required	WP3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models	SP3: Can be solved by application of well-proven analysis techniques	DP3: Can be solved in standardised ways	
Familiarity of issues	WP4: Involve infrequently encountered issues	SP4: Belong to families of familiar problems which are solved in well-accepted ways	DP4: Are frequently encountered and thus familiar to most practitioners in the practice area	
Extent of applicable codes	WP5: Are outside problems encompassed by standards and codes of practice for professional engineering	SP5: May be partially outside those encompassed by standards or codes of practice	DP5: Are encompassed by standards and/or documented codes of practice	
Extent of stakeholder involvement and conflicting requirements	WP6: Involve diverse groups of stakeholders with widely varying needs	SP6: Involve several groups of stakeholders with differing and occasionally conflicting needs	DP6: Involve a limited range of stakeholders with differing needs	
Interdependence	WP 7: Are high level problems including many component parts or sub-problems	SP7: Are parts of, or systems within complex engineering problems	DP7: Are discrete components of engineering systems	
In addition, in the cont	ext of the Professional Competencies			
Consequences	EP1: Have significant consequences in a range of contexts	TP1:Have consequences which are important locally, but may extend more widely	NP1: Have consequences which are locally important and not far-reaching	
Judgement	EP2: Require judgement in decision making	TP2: Require judgement in decision making		


Complex Problem Solving Skills : General Context

- "The Future of Jobs", World Economic Forum
 - \rightarrow significant changes in business models and the relevant workforce
 - \rightarrow a big change in the knowledge and skills required of employees,
 - \rightarrow complex problem solving skills to be the most important
 - → study of LinkedIn members (400 million people): at most 6% have the complex problem solving skills a huge gap!
- "Complex problem solving" "the capacity needed to solve new, poorly defined problems in complex situations"

Top 10 skills

in 2020

- 1. Complex Problem Solving
- 2. Critical Thinking
- 3. Creativity
- 4. People Management
- 5. Coordinating with Others
- 6. Emotional Intelligence
- 7. Judgement and Decision Making
- 8. Service Orientation
- 9. Negotiation
- 10. Cognitive Flexibility

in 2015

- 1. Complex Problem Solving
- 2. Coordinating with Others
- 3. People Management
- 4. Critical Thinking
- 5. Negotiation
- 6. Quality Control
- 7. Service Orientation
- 8. Judgement and Decision Making
- 9. Active Listening
- 10. Creativity

Source : Future of Jobs Report. World Economic Forum

Complex Engineering Problem (Local Use by ABEEK)

- 4 domains (2 attributes per domain = 8 attributes)
- Breadth of knowledge
- Depth of knowledge
- Depth of analysis (Open-ended problem)
- Authenticity (Realistic problem)

Complex Engineering Problem

• Breadth of Knowledge

- 1. Mathematics, basic sciences, computing and engineering fundamentals that support the discipline
- 2. Comprehensive knowledge applicable to the discipline
 - Depth of Knowledge
- 1. A theory-based understanding of engineering fundamentals and discipline-specific knowledge
- 2. Analytical methodology based on relevant theories and principles

Complex Engineering Problem

- Depth of Analysis (Open-ended problem)
- 1. Have no obvious solution which allows diverse perspectives

and approaches to bear multiple possible solutions

- 2. Involve first principles based analytical thinking and abstraction in model formulation
 - Authenticity (Realistic problem)
- 1. Involve wide-ranging or conflicting technical and engineering issues
- 2. Involve diverse realistic constraints

Engineering Curriculum (Accreditation Criteria)

- Math, Basic Sciences, Computing (MSC)
- 1 Year of math, basic sciences (laboratory) and computing
 - Engineering Subject
- Engineering science, design, laboratory/practice components
- Engineering design sequence: Introductory → Intermediate → Capstone Design
- Complex engineering problem in Capstone Design!
 - Liberal Arts (Complementary Studies)
- 1 Year of liberal arts and complementary subjects

Mechanical Engineering Curriculum (at my Dept.)

	Standard				Recent Additions		
Senior	Engineeri	na Electivos	Capstone Design → complex engineering problem			Specialization in Bio, nano/mems, robotics, mobile , IT, energy, product design , manufacturing	
Junior	Engineen	ng Electives	Engineering Fundamentals		Systems, broa Engineering s		4
Sophomore	Materials Science	Basic Electronics			Hands-o	on visualization, design & prototyping	
Freshmen	Mathematics, physics, chemistry Computer Programming		A sequence of 2-3 design project courses				

Role of Capstone Design in Accreditation

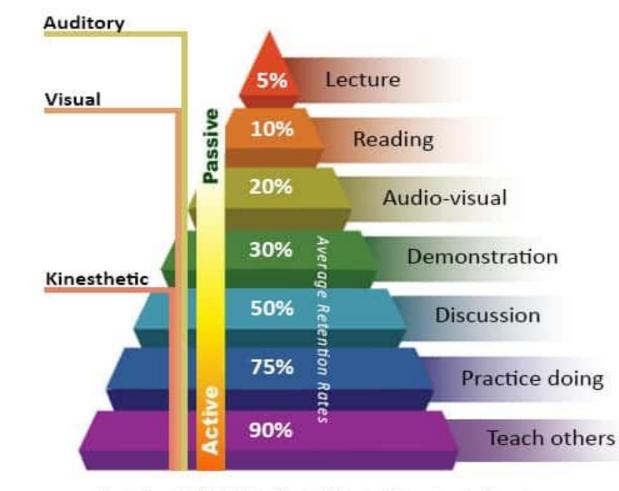
- Role of Engineering Design in Assessment of Achievement of Graduate Attributes
- Design Sequence in Curriculum: Introductory Design \rightarrow Intermediate Design \rightarrow Capstone Design
- Capstone design output used as a major assessment tool
 - Assessment of each Graduate Attribute involves:
- Performance Criteria and Performance Level(s)
- Assessment Tools (Exit Test, Course-embedded, Capstone Design Deliverables, etc.)
- For Each Assessment Tool: Rubrics and Assessment Data
- Just for Capstone Design: Alignment with Complex Engineering Problems → Performance Level

How to design Capstone Experience: Student Profile

• Strengths

- Recall theories and solve complicated (not complex!) problems
- Familiar with ICT tools / math-based engineering software

Weaknesses


- Dealing with plurality of answers or uncertainty → "belief in one best solution"
- Overly trusting of printed information, instructions (instructors, advisors)
- Problem solving as mathematical exercise → engineering intuition & judgment?
- No teamwork experience prior to university
 - → Cognitive dissonance: students good at knowledge recall but skills & attitudes??

How to Design Capstone Experience

• Objectives

- Bridge the gap: hone skills and attitude needed to solve open-ended problem
- Apply the knowledge and methodologies of mechanical engineering to solve a major engineering problem
- Practice engineering design & prototyping, team work and communication (written & oral)
 - Constraints
- Large number of students
- Faculty expertise in a narrow specialty → provide mechanical systems coverage
- Imparting skills, attitudes (how do you measure?) in a classroom setting

Learning Pyramid : Retention vs Resources Required

Adapted from the NTL Institute of Applied Behavioral Science Learning Pyramid

Features of Capstone Design Course

- Capstone Design Course Features
- 3 classes form a group (for each group, faculty drawn from 3 areas of dynamics/control, solids/production, thermal/fluid) → 3 faculty members provide coverage for one year
- Each class: 18 ~ 24 students (5~6 design teams)
- Oral outputs: Proposal, Mid-term and Final Presentation, Poster
- Written outputs: Proposal, Final Design Report, Thesis Paper
- Weekly team presentations, design progress reports
- Rubrics for different stages of design process
- Forms and templates (with published Rubrics)
- Grading: 75% team, 25% individual (instructor reluctance)
- Individual design activity report

Stage I (2007-2013)

- Lectures (sizable knowledge component!)
- Weekly lectures on design process, needs analysis, document search, patents, teamwork, proposal writing, report and journal paper writing, presentation, cost analysis
- Additional lectures on design of experiments, design of scale models
- Special lectures by vendors of engineering software
- A written test on lecture materials
 - Designing a product (design elements + constraints)
- Product design process: Needs analysis and ideation → concept design → detailed design (modeling and analysis, synthesis) → prototyping and testing
- Deal with realistic constraints, building a prototype

Stage I (2007-2013)

- Focus
 - Designing a product \rightarrow solving an open-ended problem (in line with KEC2005)
 - Experience all stages of designing a product (connection with graduate attributes not a major concern)
 - Concept design, detailed design + teamwork and communication
 - Prototype building (often rely on outside vendor for fabrication)
 - Difficulties for Faculty
 - No first-hand experience with undergraduate capstone design
 - Gap between faculty specialty and design of mechanical products and systems
 - How do you impart skills and attitude, not just knowledge

Alignment with WA Complex Engineering Problem

- Wide-ranging or conflicting technical, engineering issues
- No obvious solution and require abstract thinking, originality in analysis
- Research-based knowledge, a fundamentals-based, first principles analytical approach
- Involve infrequently encountered issues
- Outside of problems encompassed by standards and codes of practice
- Diverse groups of stakeholders with widely varying needs
- Significant consequences in a range of contexts
- High level including many component parts or sub-problems

Stage II: Major Revision in 2014 (in line with KEC2015)

- Cut down lectures to a minimum \rightarrow emphasis on skills and attitude
- Retain lectures on just two topics: design of experiments, design of scale models
- All other lecture materials as references/sample documents
 - Reset course objectives
- Not limited to designing a product
- Emphasis on defining and solving a *complex engineering problem*
- Inter-disciplinary project as an option: (i) ME + industrial design

(ii) ME + mobility (robots, autonomous vehicles)

• Defining and Solving a Significant Engineering Problem

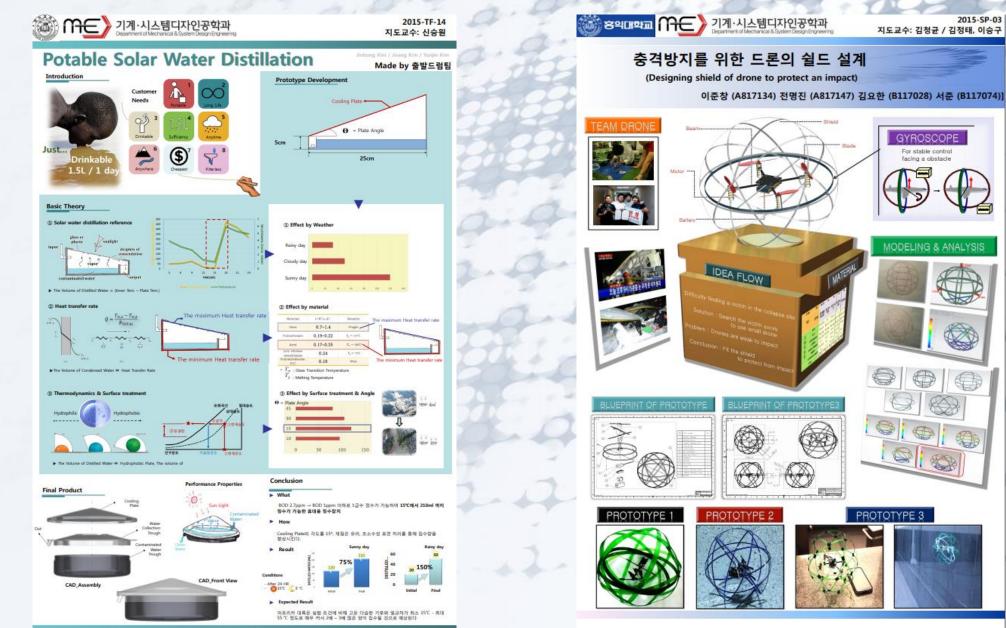
An Example

- Self-diagnostics for a Significant Problem
 - \rightarrow Is the level of difficulty and the knowledge required appropriate?
 - → Is the scope and focus of the problem relevant to the practice of mechanical engineering?
 - → Will the design activity involve mostly paper calculations/digital simulations such that physical validation of major outcome(s) would not be feasible?
 - → Will the problem allow for creative approach and produce tangible outcome(s)?

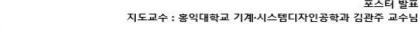
Final Team Outputs

- Year-end Department-Wide Event
- Poster presentation + Product Demo: ~40 design teams evaluated by the program faculty

- Graduation Thesis
- Design teams write graduation thesis using format of "KSME Journal of Technology & Education", (Korean Society of Mechanical Engineers)
- Some are actually published in "KSME Journal of Technology & Education"



Alignment with WA Complex Engineering Problem

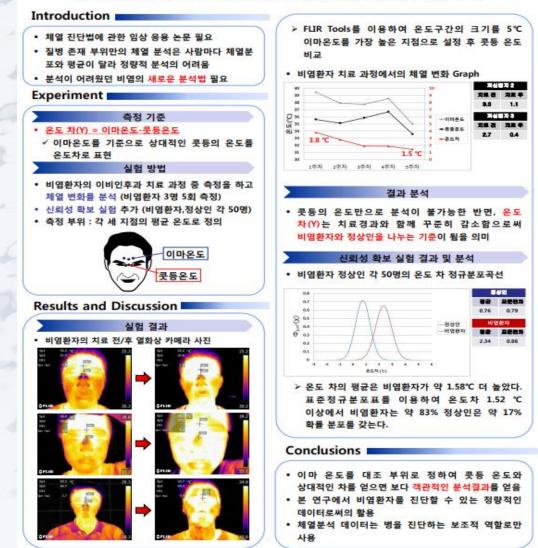

- Wide-ranging or conflicting technical, engineering issues
- No obvious solution and require abstract thinking, originality in analysis
- Research-based knowledge, a fundamentals-based, first principles analytical approach
- Involve infrequently encountered issues
- Outside of problems encompassed by standards and codes of practice
- Diverse groups of stakeholders with widely varying needs
- Significant consequences in a range of contexts
- High level including many component parts or sub-problems

DESIGN A PRODUCT

BUILD & TEST

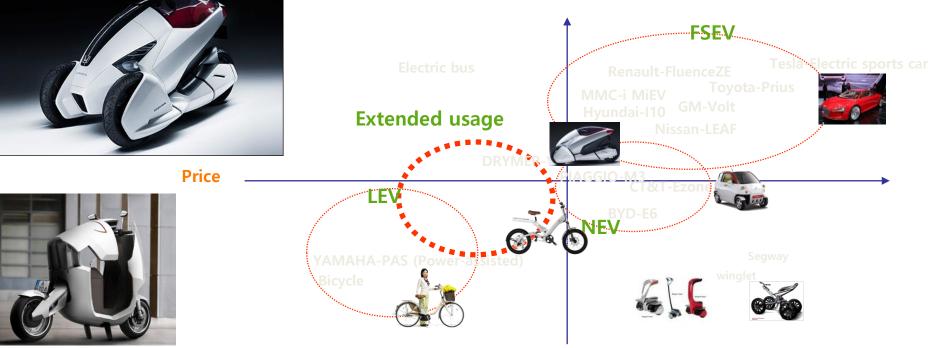
Real 상징 대한기계학회

포스터 발표


RESEARCH TOPIC

열적외선 카메라를 이용한 비염 환자의 체열 분석

THERMOGRAM ANALYSIS OF RHINITIS PATIENTS USING THERMAL INFRARED CAMERA


최범준 (A917175) 최현제 (A917180) 김재성 (B117033) 김정호(B117036)

KSM

INDUSTRIAL DESIGN-ENGINEERING COLLABORATION

Hybrid tricycles : Design and Prototyping

Travel distance / performance

- 1. Safety \rightarrow 3wheel / Tilting technology
- 2. Efficiency \rightarrow Electric motor and lithium-ion battery
- 3. Posture comfort for elderly \rightarrow Recumbent / Semi-recumbent
- 4. Applications \rightarrow Optional modules such as baby-carriage
- 5. Marketability \rightarrow Affordable price and distinguishable style (2.5 ~ 5mil KRW)

ECO – FRIENDLY VEHICLE

Through capstone design, students

- **Define** a complex engineering problem
- Explore a multiplicity of approaches and techniques to solve the problem
 - \rightarrow basic analysis, modelling & formulation, computer simulation/building/experiment,

testing & validation

- Apply the knowledge and skills in a novel context
 - \rightarrow "domain-transfer" of the knowledge and skills
- Realize viscerally that the "real-world" is inherently noisy and theories are limiting

BAETE Symposium

August, 2020

Thank you for your kind attention !

- + 2 - 4 - 4